The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
نویسندگان
چکیده
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors.
منابع مشابه
The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition
The P2X7 receptor mediates extracellular ATP signaling implicated in the development of devastating diseases such as chronic pain and cancer. Activation of the P2X7 receptor leads to opening of the characteristic dye-permeable membrane pore for molecules up to ~900 Da. However, it remains controversial what constitutes this peculiar pore and how it opens. Here we show that the panda receptor, w...
متن کاملAre second messengers crucial for opening the pore associated with P2X7 receptor?
Stimulation of the P2X7 receptor by ATP induces cell membrane depolarization, increase in intracellular Ca2+ concentration, and, in most cases, permeabilization of the cell membrane to molecules up to 900 Da. After the activation of P2X7, at least two phenomena occur: the opening of low-conductance (8 pS) cationic channels and pore formation. At least two conflicting hypotheses have been postul...
متن کاملPore formation is not associated with macroscopic redistribution of P2X7 receptors.
The present study examines whether changes in P2X7 purinergic receptor density precede formation of the cytolytic pore characteristic of this receptor. We fused P2X7 receptors with enhanced green fluorescent protein (EGFP) at the amino or carboxy termini (EGFP-P2X7 and P2X7-EGFP). Electrophysiological characterization in Xenopus oocytes revealed wild-type responses to ATP for GFP-tagged recepto...
متن کاملInvolvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells.
Multinucleated giant cells (MGC), a hallmark of chronic inflammatory reactions, remain an enigma of cell biology. There is evidence implicating the purinergic P2X7 receptor in the fusion process leading to MGC. To investigate this, we used HEK 293 cells stably transfected with either 1) the full-length rat P2X7 receptor (P2X7 cells), 2) a rat P2X7 receptor lacking the C-terminal domain (P2X7TC)...
متن کاملRole of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein.
YopB is a 401-amino-acid protein that is secreted by a plasmid-encoded type III secretion system in pathogenic Yersinia species. YopB is required for Yersinia spp. to translocate across the host plasma membrane a set of secreted effector proteins that function to counteract immune signaling responses and to induce apoptosis. YopB contains two predicted transmembrane helices (residues 166 to 188...
متن کامل